Devi , Shakuntala
° Calendrier
de Devi. – Ensemble de quatre tableaux établis par la calculatrice
prodige indienne Devi en 1977 et qui permettent de trouver le jour de la semaine
d'une date donnée dans le calendrier grégorien.
Tableau 1. Calcul des excédents
Tableau 2 Code du mois
|
Janv. |
Fév. |
Mars |
Avril |
Mai |
Juin. |
Juil. |
Août |
Sept. |
Oct. |
Nov. |
Déc |
Code |
0 |
3 |
3 |
6 |
1 |
4 |
6 |
2 |
5 |
0 |
3 |
5 |
Tableau 3. Code de l’année
|
1900 |
1904 |
1908 |
1912 |
1916 |
1920 |
1924 |
|
1928 |
1932 |
1936 |
1940 |
1944 |
1948 |
1952 |
|
1956 |
1960 |
1964 |
1968 |
1972 |
1976 |
1980 |
|
1984 |
1988 |
1992 |
1996 |
|
|
|
Code |
0 |
5 |
3 |
1 |
6 |
4 |
2 |
Tableau 4. Code du jour de la semaine
Résultat |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
Jour |
L |
Ma |
Me |
J |
V |
S |
D |
Voici la séquence
des opérations :
1. On réduit le
quantième dans l’intervalle 0 à 6, en soustrayant le multiple approprié de
7 (tableau 1).
2. On y additionne le
code du mois (tableau 2). Au besoin, on fait la même opération qu’en 1.
3. a) Si l’année
est bissextile, au résultat précédent, on additionne le code de l’année,
sauf pour janvier et février où on soustrait 1.
b) Si l’année n’est
pas bissextile, au résultat trouvé en 2, on additionne le code de l’année
bissextile antérieure la plus proche et la différence entre les deux années.
Au besoin, on fait la même opération qu’en 1.
4. Selon le
résultat, on trouve le jour de la semaine dans le tableau 4.
Par exemple, le 16 janvier 1924 est un mercredi. On fait 16 -
14 = 2 (tableau 1). Le code de janvier est 0. On fait 2 + 0 = 2. Le code de 1924
est 2. On y soustrait 1 puisque l’année est bissextile. On fait 2 + 2 - 1 =
3. On lit mercredi dans le tableau 4. Le 25 mars 1993 est un jeudi. On fait 25 -
21 = 4 (tableau 1). Le code de mars est 3. On fait 4 + 3 = 7 : ce qui
correspond à 0. Le code de 1992 est 3. On fait 1993 - 1992 = 1, puis 0 + 3 + 1
= 4. Dans le tableau 4, on lit jeudi. Le tableau suivant indique l’opération
à faire pour trouver le jour de la semaine des parties séculaires 16 à 23. La
dernière ligne donne le jour de la semaine du 25 mars dont la partie annuelle
est 93.
Tableau 5. Partie séculaire
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
-1 |
+4 |
+2 |
0 |
-1 |
+4 |
+2 |
0 |
Me |
L |
S |
J |
Me |
L |
S |
J |
© Charles-É. Jean
Index
: D
|